

 Navigation

 	
 index

 	m2x-python stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/m2x-python/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/m2x-python/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	m2x-python stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 README.html

 Navigation

 		
 index

 		m2x-python stable documentation »

AT&T’s M2X Python Client

AT&T M2X [http://m2x.att.com] is a cloud-based fully managed time-series data storage service for network connected machine-to-machine (M2M) devices and the Internet of Things (IoT).

The AT&T M2X API [https://m2x.att.com/developer/documentation/overview] provides all the needed operations and methods to connect your devices to AT&T’s M2X service. This library aims to provide a simple wrapper to interact with the AT&T M2X API for Python [https://www.python.org]. Refer to the Glossary of Terms [https://m2x.att.com/developer/documentation/glossary] to understand the nomenclature used throughout this documentation.

Getting Started

		Signup for an M2X Account [https://m2x.att.com/signup].

		Obtain your Master Key from the Master Keys tab of your Account
Settings [https://m2x.att.com/account] screen.

		Create your first Device [https://m2x.att.com/devices] and copy its Device
ID.

		Review the M2X API
Documentation [https://m2x.att.com/developer/documentation/overview].

Description

This library provides an interface to navigate and register your data source
values with the AT&T’s M2X service [https://m2x.att.com/], while supporting
Python 2 and 3.

Dependencies

		requests [http://www.python-requests.org]

		iso8601 [https://pypi.python.org/pypi/iso8601]

To use Python on your local machine, you’ll need to first install
Python-setuptools.

Installation

The project is very easy to install — the different options are:

$ pip install m2x

or:

$ easy_install m2x

or cloning the repository:

$ git clone https://github.com/attm2x/m2x-python.git
$ cd m2x-python
$ python setup.py install

Note: If you are installing from behind a proxy, setup.py may have trouble
connecting to the PyPI server to download dependencies. In this case, you’ll
need to set the following environment variables to let the setup script know
how to navigate your proxy:

HTTP_PROXY=http://proxyserver:port/
HTTPS_PROXY=https://proxyserver:ssl_port/

Usage

In order to communicate with the M2X API, you need an instance of
M2XClient. You need to pass your Master API key in the
constructor to access your data. Your Master API Key can be found in your
account settings.

from m2x.client import M2XClient

client = M2XClient(key='<API-KEY>')

This client an interface to your data in M2X

		Distributions

distribution = client.distribution('<DISTRIBUTION-ID>')
distributions = client.distributions()

		Devices

device = client.device('<DEVICE-ID>')
devices = client.devices()

		Jobs

job = client.job('<JOB-ID>')

		Key

key = client.key('<KEY-TOKEN>')
keys = client.keys()

Examples

Scripts demonstrating usage of the M2X Python Client Library can be found in the examples directory. Each example leverages system environment variables to inject user specific information such as the M2X API Key or Device ID. Review the example you would like to try first to determine which environment variables are required (hint: search for os.environ in the example). Then make sure to set the required environment variable(s) when running the script.

For example, in order to run the post_value script, you will need an API Key. After adding your API Key to the post_value.py file, navigate to the /examples directory and run the following command to execute the script:

$ API_KEY=<YOUR-API-KEY> python ./post_value.py

Getting HTTP Response

You can retrieve the last response received by the client using the
last_response property of the client object:

import os
from m2x.client import M2XClient

Instantiate a client
client = M2XClient(key=os.environ['API_KEY'])

Make a request to the M2X API
client.devices()

Get raw HTTP response
raw = client.last_response.raw

Get HTTP respose status code (e.g. `200`)
status = client.last_response.status

Get HTTP response headers
headers = client.last_response.headers

Get json data returned in HTTP response
json = client.last_response.json

In the case of an HTTP error response (like a 400 or 500 error),
the library will drop an HTTPError exception (inherited from
python-requests). You can still retrieve the original respone by
catching this exception:

import os

from requests.exceptions import HTTPError

from m2x.client import M2XClient

Instantiate a client
client = M2XClient(key=os.environ['API_KEY'])

Make a request to the M2X API
try:
 client.devices()
except HTTPError as error:
 # Get raw HTTP response
 raw = client.last_response.raw

 # Or get it from the error instance
 # raw = error.response

 # Get HTTP respose status code (e.g. `200`)
 status = client.last_response.status

 # Get HTTP response headers
 headers = client.last_response.headers

 # Get json data returned in HTTP response (might be None)
 json = client.last_response.json

Versioning

This lib aims to adhere to Semantic Versioning 2.0.0 [http://semver.org/]. As
a summary, given a version number MAJOR.MINOR.PATCH:

		MAJOR will increment when backwards-incompatible changes are introduced to
the client.

		MINOR will increment when backwards-compatible functionality is added.

		PATCH will increment with backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.MINOR.PATCH format.

Note: the client version does not necessarily reflect the version used in
the AT&T M2X API.

License

This library is released under the MIT license. See LICENSE for the terms.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

CONTRIBUTING.html

 Navigation

 		
 index

 		m2x-python stable documentation »

Contribution Workflow for M2X Client Libraries

If you would like to submit an issue or contribute to any M2X Client Library, please adhere to the contribution guidelines found here: https://github.com/attm2x/m2x-service/blob/master/CONTRIBUTING.md

Creating a new library

If you are creating a new client library, please adhere to the guidelines found here: https://github.com/attm2x/m2x-service/blob/master/CLIENT-CONTRIBUTIONS.md

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

search.html

 Navigation

 		
 index

 		m2x-python stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

USAGE.html

 Navigation

 		
 index

 		m2x-python stable documentation »

AT&T’s M2X Python Client - Usage

To create a client instance only a single parameter, the Master API Key, is
needed. Your API Keys can be found in your account settings. To create a client
instance just do:

>>> from m2x.client import M2XClient
>>> client = M2XClient(key='YOUR API KEY HERE')

The client provides an interface to access your Devices (and Catalog),
Distributions and Keys.

Devices

Devices is accessible by the devices property in a M2XClient
instance. The property is an iterable type where each entry is a Device
instance.

Iteration:

>>> for device in client.devices():
>>> ...

Creation:

>>> device = client.create_device(
... name='Devices',
... description='Device description',
... visibility='public'
...)
<m2x.v2.devices.Device at 0x365c590>

Search:

>>> devices = client.devices(q=...)

Update (following the previous code):

>>> device.update(
... name='Device2',
... description='Device2 description',
... visibility='private',
... status='enabled'
...)

The parameters name, visibility must be provided, otherwise
a validation error is returned by the service (response status code
422).

Removal (following the previous code):

>>> device.remove()

Single item retrieval:

>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>

The parameter to .get() is the Device ID.

Devices by tags:

>>> client.device_tags()
[{"tag #1": 2}, {"tag #2": 3}]

Device streams:

>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>
>>> device.streams()
[<m2x.v2.streams.Stream at 0x7f6791d12290>]

Device location:

>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>
>>> device.location()
<m2x.v2.devices.Location at 0x7f6791d60e50>

Device updates (post several values to the device in a single request):

>>> from datetime import datetime
>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>
>>> device.post_updates(values={
 'stream1': [
 {
 'timestamp': datetime.now(),
 'value': 100
 }, {
 'timestamp': datetime.now(),
 'value': 200
 }
],
 'stream2': [
 {
 'timestamp': datetime.now(),
 'value': 300
 }, {
 'timestamp': '2015-02-03T00:33:43.422440Z'
 'value': 400
 }
]
})

Catalog

The catalog is just a list of public devices accessible to everybody. To
access it, just use the catalog property:

>>> for device in client.device_catalog():
>>> ...

Jobs

Jobs can be retrieved individually using their id

>>> job = client.job('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.jobs.Job at 0x1652fd0>

Keys

Keys is accessible by the keys property in a M2XClient instance.
The property is an iterable type where each entry is a Key instance.

Iteration:

>>> for key in client.keys():
>>> ...

Creation:

>>> key = client.create_key(
... name='Key',
... permissions=['DELETE', 'GET', 'POST', 'PUT']
...)
<m2x.v2.keys.Key at 0x365c500>

Search:

Keys don’t support searching, but the method is left implemented in
case it’s supported in the future. Calling search will return all the keys.

Update (following the previous code):

>>> key.update(
... name='Key2',
... permissions=['GET', 'POST', 'PUT']
...)

The parameters name and permissions must be provided, otherwise
a validation error is returned by the service (response status code 422).

Removal (following the previous code):

>>> key.remove()

Streams

Streams can be seen as collection of values, M2X provides some useful
methods for streams.

Iteration:

>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>
>>> for stream in device.streams():
 ...

Values:

>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>
>>> stream = device.streams()[0]
<m2x.v2.streams.Stream at 0x7f6791d12290>
>>> stream.values()
[<m2x.v2.values.Value at 0x7f6791d123d0>, <m2x.v2.values.Value at 0x7f6791250890>, ...]
Add a value without timestamp (server will set current date as timestamp)
>>> stream.add_value(1234)
Add a with timestamp
>>> stream.add_value(1234, datetime.datetime.now())
Post several values
>>> stream.post_values([
 {'timestamp': datetime.datetime.now(), 'value': 100},
 {'timestamp': datetime.datetime.now(), 'value': 200}
])

Sampling:

>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>
>>> stream = device.streams[0]
<m2x.v2.streams.Stream at 0x7f6791d12290>
>>> stream.sampling(interval=1)
[<m2x.v2.values.Value at 0x7f6791d123d0>, <m2x.v2.values.Value at 0x7f6791250890>, ...]

Stats:

>>> device = client.device('188a0afb3adc379706e780a4eafbd153')
<m2x.v2.devices.Device at 0x1652fd0>
>>> stream = device.stream()[0]
<m2x.v2.streams.Stream at 0x7f6791d12290>
>>> stream.stats()
{
 u'end': u'2015-01-01T22:44:37.890Z',
 u'stats': {
 u'avg': u'0.40545455E2',
 u'count': 11.0,
 u'max': 82.0,
 u'min': 8.0,
 u'stddev': 21.266122
 }
}

Distributions

Distributions are accessible by the distributions property in
a M2XClient instance. The property is an iterable type where each entry
is a Distribution instance.

Iteration:

>>> for distribution in client.distributions():
>>> ...

Creation:

>>> device = client.create_distribution(
... name='Distribution',
... description='Distribution description',
... visibility='public'
...)
<m2x.v2.distributions.Distribution at 0x365c590>

Search:

>>> distributions = client.distributions(q=...)

Update (following the previous code):

>>> distribution.update(
... name='Distribution2',
... description='Distribution2 description',
... visibility='private'
...)

The parameters name, visibility must be provided, otherwise
a validation error is returned by the service (response status code
422).

Removal (following the previous code):

>>> distribution.remove()

Devices (following previous code):

>>> distribution.devices()
[<m2x.v2.devices.Device at 0x7f6791d60f90>, <m2x.v2.devices.Device at 0x7f6791d60410>]

Time

For devices that do not have a Real Time Clock, M2X provides a set of endpoints
that returns the server’ times.

>>> client.time()
{u'iso8601': u'2015-06-25T21:06:54.841Z',
 u'millis': 1435266414841,
 u'seconds': 1435266414}
>>> client.time_seconds()
1435266437
>>> client.time_millis()
1435266445736
>>> client.time_iso8601()
'2015-06-25T21:07:31.328Z'

Lets build a V2 RandomNumberGenerator Data Source

Lets build a python random number generator data source using the API
described above.

First import everything:
import random
from m2x.client import M2XClient

Create a client instance:
client = M2XClient(key='288b375565d3402a8b6bd8c343e9fcad')

Now create a device for the values:
device = client.create_device(
 name='RNG Device Example',
 description='Device for RandomNumberGenerator example',
 visibility='public'
)

Create a data stream in the feed:
stream = device.create_stream(name='values')

And now it's time to register some values in the stream:
for x in range(10):
 stream.add_value(random.randint(0, 100))

Lets print the values:
for val in stream.values():
 print '{0} - {1}'.format(val.at.strftime('%Y-%m-%d %H:%M:%S'),
 val.value)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

